
Buzé Documentation

Welcome to Buzé!

Buzé is a full featured, portable modular music tracker that works on
Windows and Linux (using Wine). Check out the introduction for a brief list
of features.

 



Topics for the documentation:

 

User documentation
Developer documentation

Please note: This documentation is a work in progress. Some information
may be out of date and not entirely correct.



Getting started

Read the FAQ for installation tips, troubleshooting startup problems and
more. Also printing out these cheatsheets might be a big help.

Learn how to create and connect plugins in the machine view.

Learn about patterns and pattern formats under basic pattern concepts.

Learn how to create patterns, enter notes and automate plugin parameters in
the pattern editor.

Learn how to create pattern formats in the pattern format view.

Learn how to alter the sound of synths and effects in the parameter view.

Review and learn from some general usage tips that have been collected
over time.



Tips

Get inspired

Print the whole manual + cheatsheats, and carry it around it while you are
on the bus, train or just on a holiday.
It pays off, seriously.



Use the Lunar plugins

Buze is shipped with many Lunar plugins
(Reverb/Compressor/Gain/Distortion/etc). Use them as much as possible to
promote sharing and portability of songs.



Use Note Generators (with) VST plugins

Get used to connecting Note Generators/MIDI Trackers to plugins.
A VST
plugin is just an effect or an generator, so it needs something
extra to have
notes send to it.



Learn the keys

Know what the F-keys do.
Also Alt-backspace on samples or machines
always show properties.
ESC always goes back (to the previously
state/focused window).



(Multiple) screen layouts

Hold CTRL and drag a tab into another tab.
This way you can combine
views with one another.
Don't forget to store it as a screenlayout, then you
can
recall the views later using the numpad buttons.



Rename your machines

Select a machine -> Alt-backspace -> (keydown) -> enter name -> ESC



Show hide the paramviews

If you doubleclick a machine, it opens the paramview.
Instead of ending up
in a neverending open/close clicky-madness, just
leave your paramviews
open (and hit F12 to hide/unhide them).



Combined machineview

Hold CTRL and click a tab of a parameterview, and release it on top
of
another parameterview. This way you can combine them.



Templates: Build your typical-studio

Many audioengineers use specific combinations of effects over and over
again.
The great thing about buze, is that it's modular, but not perse.
Once
you have a great combination of effects, just select these machines, and
rightclick:
'Save Selection As'. Enter for example 'mysuperreverb.armz' and
you saved it as a preset.
When entering 'mysuperreverb' in the machineview,
you will have it under your fingertips.



Remember your favorite plugins/instruments

If you have 1000 soundfonts/presets/synth, and at one day you find the-
best-sounding-string-ever, or the-best-preset-ever, you can just rightclick
the plugin -> 'Save Selection As' -> 'superstring.armz'.
When entering
'superstring' in the machineview, you will have it under your fingertips.



Smart MIDI mapping

Of course you can map everything to MIDI using rightclicks on sliders in
the parameterview.
But, if you have particular wishes, write your own script
in the scripting view.
There are example scripts their which demonstrate
scripted MIDI-mappings.



Recycle your sound

Any machine can be rightclicked, and its output can be rendered to the
wavetable.
This is handy in situations of too CPU-intensive songs, or just to
refactor yourself into simplicity.



Help what does this machine do?

When opening the parameterview of a machine, press the help icon.
It will
then try to open a .html, .txt, .pdf file carrying the same name of the
machine (without dll).
(So if you install plugins, it can help to rename the
docs)
Also, in any case press F1 in case of doubt.



Keep machineview tidy

For machines which are small details, rightclick it, and press 'minimize'.



Separate notes & automation in 1 pattern

It is handy to have 'note view' and a 'envelope view'.
So you can switch
between the musical data, and the automations of
effects etc.




1. Create envelope columns where necessary (hit CTRL-t on non-note
columns)

2. Optionally select an envelope-type using the rightclick contextmenu

3. Hide all non-note related columns using CTRL-k

4. Select all: CTRL-| (several times) 

5. Hit CTRL-k to toggle between views..voila!




Reroute notes

Did you know you can reroute notes?
If you use Note Generators, you can
send its output to other
Note Generators, or MIDI Trackers.
Also MIDI-
plugins can be usefull in this situation.



Send MIDI to your external gear

1. Make sure you have configured at least one MIDI-output in the
preferences screen.

2. Now add an 'MIDI Out' Machine and optionally a 'MIDI Tracker'
machine.

3. Rightclick the 'MIDI Out' Machine and select a midi-output.

4. Connect the 'MIDI Tracker' to the 'MIDI Out' machine. 

5. Click the 'MIDI Tracker' machine and hit some keyboardkeys.

You will now hear some notes being send to your external gear.




Frequently Asked Questions

Answers to questions and solutions to problems that have come up.



Q: Where can I get (human) help?

A: Goto #buze of EFNET with your IRCclient (like mIRC), we will be
there .



Q: What are the keyboard shortcuts?

A:Hit F1 as much as possible in any situation. You will get your
keyboardshortcuts overview there. Also for a full overview see the
keyboard shortcuts manualsection here.

clbr://internal.invalid/book/keyboardshortcuts.html


Q: How to get not confused by pattern(formats)?

A: Remember, hitting ESC will always take you back to the main/default
pattern.



Q: How can I nest patterns like in Buzz?

A: Add a 'Pattern Player'-machine. Go to the patternformat editor (shift-F2),
and tick the 'Trigger' checkbox of the 'Pattern Player'-machine. A column
appears, and if you enter '00', a nested patternblock will appear. Hit enter to
enter the pattern, and ESC to leave. Once you are inside your nested
patternblock, you can hit shift-F2 again to add columns to it.



Q: How do I render audio?

A: Rightclick the master (or any machine), and choose 'Render To'. From
there you can render the machine's output to a file, or a wave in the
wavetable.



Q: My VST instrument does not make sound?

A: You forgot to connect a 'Note Generator'-machine to it. By doing so, you
will also be able to send notes to your plugin in the patterneditor. Optionally
a 'MIDI Tracker' can be used. Remember it once, and you're done.



Q: Can Buzé co-exist with Buzz?

A: Yes, theoretically, although the programs have grown apart to such as a
degree it may be considered beneficial to maintain two installations.



Q: How to install?

A: Unpack the zip, add plugins and start buze.exe. Check out the
documentation for the individual plugin wrappers on how and where to
install plugins.



Q: Where can I get Psycle and LADSPA plugins?

Psycle comes with 58 plugins. Install and copy the contents of
PsyclePlugins into Gear\Psycle.
There are 90 precompiled LADSPA plugins for Windows
on the
Audacity download page. Install to Gear\Ladspa.

http://psycle.pastnotecut.org/database.php?action=view&fid=89&cid=1
http://downloads.sourceforge.net/audacity/LADSPA_plugins-win-0.4.15.exe
http://sourceforge.net/project/showfiles.php?group_id=6235


Q: I get this error message when Buzé starts: MI.H: GetInfo()
called

A: This message appears when Paniq's Plutonium is initialized. While it is a
harmless message, this machine is defunct
and can safely be deleted.



Q: I get the error message above (or some other error
message), but I cannot press OK or X...

A: You might have (an older version of) Gear/Generators/CyanPhase Buzz
Overloader.dll. Please delete it - Buzé will not work when it is there.



Q: What is the deal with the text mode console window that
opens on startup?

A: Unless you started Buzé with a /debug parameter, this window appears
when Paniq's Pybuzz is initialized. Whenever Pybuzz is used, it will print
debug messages and
other output to this window.



Q: Buzé crashes on startup...

A: Buzz and Buzé normally crashes on startup for the same reason:
unstable machines. While we have attempted to put the most well-known
broken machines in blacklist.txt, you will occasionally
need to track down
unstable machines by yourself. Use a tool such as Dependency Walker or
buze.exe /debug to help finding problem DLLs. If you encounter a machine
that you think ought to be placed in the blacklist, please let us know by
logging a bug report.

Known startup problems:

The presence of Gear/Generators/CyanPhase Buzz Overloader.dll
crashes on startup (solution: delete file)
Drivers for Samson C01U USB Mic are reported to cause startup
crashes (solution: uninstall driver)
Device named "ASIO DirectX Full Duplex Driver" is known to cause
problems, and may crash on startup unless audio driver buffer size is
set to 512 (solution: use another driver)
Audio driver initialization may halt if there are non-existent (USB)
ASIO devices in the registry. (solution: delete unused ASIO device
entries in the registry under
HKEY_LOCAL_MACHINE\SOFTWARE\ASIO)



Q: I get noise bursts...

A: You are apparently using a broken machine. Don't do that. Find out
which machine causes the noise and delete it.
If you encounter a machine
that causes noise bursts, please let us know by logging a bug report.



Q: Can Buzé use VSTs?

A: Yes. Buzé now supports VST and VSTi natively, with access to most
parameters and features directly. By default, plugins are loaded from
Gear/VST, but this can be changed in Preferences -> Plugins -> VST Paths.

Buzé also supports VSTs through the Buzz wrapper: The Polac VST
plugins enable both VST and VSTI. Make sure you have latest version
though.

http://www.xlutop.com/buzz


Q: I have problems with a machine I use a lot in Buzz...

First make sure you have all DLLs the machine needs. Some machines use
runtime libraries from Visual Studio, such as
msvcp60.dll, msvcrt.dll and
these must exist on your system, either in Buzés program folder or in
c:\windows\system32.

Polac VST & Polac VSTi:

The index.txt entries are not expanded with subdirectories like in
original Buzz.
When selecting a VST instrument from its right click menu, the
machine changes its name in Buzz. This hack has not been
successfully implemented in Buzé.
If PVST crashes when you connect it to the master, make sure you are
using the latest version of both PVST and Buzé.

All WaveOut/WaveIn machines, Jeskola/Polac ASIO In/Out machines:
These machines depend on functionality in Buzz' native wave output
drivers, which are not available in libzzub.
Use the built-in Audio Input and
Audio Output plugins instead.

BTDSys PeerCtrl, BTDSys PeerCtrl 'Basic', BTDSys LiveJumpHACK:

These machines use known offset hacks and were attempted patched, but
caused the wrapper to fail altogether. Therefore, they
are currently
blacklisted as they will cause trouble no matter what.

ld mixer:

Please see the separate ld mixer 1.03 checklist page.



Q: I have problems with a VST I use a lot in another
sequencer...

Please report any problematic VSTs in our bugtracker. Our VST wrapper is
a work in progress.



Q: Does Buzé crash if I use any of the machines utilizing
hacks?

A: No, most likely not. The Buzz machine wrapper patches several known
hacks to prohibit crashes.

For a list of the currently patched plugins, have a look at
Gear/Native/buzz2zzub.ini, which controls patching options per DLL.
The
.ini-file has some documentation, which shortly explains the purpose of
each patch option.
Patched plugins are probably safe to use, although if
their core functionality is based on hacks they may not (yet) function
properly.

If you are a machine author using hacks in your Buzz machine (not
recommended), make sure the supported patches
are enabled in
buzz2zzub.ini for it to work as expected in Buzz. The wrapper does not
support any direct GUI-hacks, such as responding
to correct window
messages, but instead focuses on the memory offset hacks used by several
popular plugins.



Q: How can I report a bug?

A: The one place to keep bug reports and feature requests is in the ticket
database. To enter tickets, you will need a Sourceforge account.

https://sourceforge.net/u/anders-e/buze/tickets/


Q: Did you buy the Buzzlib license from Oskari Tammelin and
is it possible to use libzzub in commercial projects?

A: The libzzub/Buzé project owns a Buzzlib license, which was aqcuired
mainly to distribute binaries legally. None of the buzzlib code
has been used
in libzzub or Buzé. Unfortunately the overall licensing scheme is quite
messy. Buzé is released under the same license as WTL.
libzzub is LGPL,
which means you can use the replayer engine in a commercial project as
long as any changes you make to libzzub are returned to the community.

libzzub uses a Buzz-wrapper to provide support for original Buzz machines.
The wrapper is GPL-licensed, except Oskaris original headers
which have
the following notice:

// This header file may be used to write _freeware_ DLL 
"machines" for Buzz

// Using it for anything else is not allowed without a 
permission from the author


 

I am not a lawyer, but I think you should talk to Oskari if you want to use
libzzubs Buzz-wrapper commercially.

http://jeskola.net/


Q: What's the difference/purpose/relationship of all this Buzé,
BuzzRMX, Aldrin, Neil, Armstrong, libzzub, libneil-stuff?

A: Aldrin, Buzé, Buzz RMX and Neil are different Buzz clones with
entirely different design goals. All four are based on different versions of
the same replayer engine.

libzzub is the name of the replayer engine originally split off from an early
version of Buzé. Later libzzub went through a major rewrite and renamed to
Armstrong. Armtrong has gone through yet another major rewrite since
then.

Aldrin is a successor of Jeskola Buzz developed mainly on and for the
Linux operating system.

Buzé is a modern remake of Jeskola Buzz for Windows.

Buzz RMX is a 1:1 remake of Jeskola Buzz for Windows. It is forked from
an an earlier version of Aldrin and is
intended as a pick-up point for
developers that want to tweak and extend the original Buzz user interface.

Armstrong is an open source platform independent C/C++ music tracking
and sequencing library.

Neil is an active open source fork of Aldrin.

libzzub is the former name of Armstrong. The "zzub" prefix is often seen in
the source code still.

http://aldrin.sf.net/
http://www.batman.no/buze/
http://www.buzzrmx.com/
http://www.batman.no/buze/
http://sites.google.com/site/neilsequencer/


Q: How do I pronounce Buzé?

A: It's pronounced with a french accent, preferably in a slightly gay tone.
Try yourself: Buh-zeh, buh-zeh, buh-zeh.



Cheatsheets

Of course slight changes can occur from version to version. But here are two
cheatsheets which explain a bit of the basics.







Global

Buze is built on a framework which resembles Visual Studio in regards to
using docks and tabs to organize its views.



Working with tabs, views and docks

Press F1 in most views to bring up a view with all related keyboard,
mouse and MIDI shortcuts. Press F1 twice to show the global help.
Press Ctrl+Tab and Ctrl+Shift+Tab to cycle through the recently
displayed views.
Views can be undocked or moved by dragging the tab label. An
undocked window can be docked by holding down CTRL while
dragging the window title.
The screenset feature helps organizing up to ten different view and
dock layouts.



Main toolbars

[TODO: Screenshot + description of every button on all main toolbars]



Main menu

File

New: Clears everything and creates a blank document.

Open: Opens an existing song from disk. Supports .ARMZ, .BMX,
.MOD, .IT, .S3M.

Save / Save As...: Saves the current project in .ARMZ file format.

Recent files: Quick access to a list of recent projects.

Save / Save As...: Saves the current project in .ARMZ file format.

Edit

Undo/redo: Steps through history.

Cut/Copy/Paste: Work with the clipboard.

View

Toolbar: Toggles main toolbar visibility.

Status Bar: Toggles status bar visibility.

Main Toolbars: Toggles visibility of other toolbars in the main frame.

Pattern Toolbars: Toggles visibility of toolbars in the pattern editor.

Lock Toolbars: Freeze the toolbars. When enabled, toolbars can not
dragged.

Recall screenset: Restores views, windows, sizes and positions from a
predefined screeenset.



Store screenset: Saves the position and size of all currently open
views and windows to one of the ten available screenset slots.

Pattern Editor: Sets focus to, or opens the pattern editor.

New Pattern Editor: Opens a new pattern editor.

Machines: Sets focus to, or opens the machine view.

Wavetable: Sets focus to, or opens the wavetable and wave editor.

Comment: Sets focus to, or opens the song comment editor.

Pattern Format Editor: Sets focus to, or opens the pattern format
editor.

Pattern List: Sets focus to, or opens the pattern list.

Analyzer: Sets focus to, or opens the signal analyzer.

All Machines: Sets focus to, or opens the machine browser.

Files: Sets focus to, or opens the file browser.

CPU Meter: Sets focus to, or opens the CPU Meter.

History: Sets focus to, or opens the history view.

Themes: Changes the current theme

Preferences: Sets focus to, or opens the preferences view.

The status bar

The two last columns of the status bar display the currently selected MIDI-
plugin and current CPU usage.



Machine View

The machine view helps creating and structuring plugins in a graph.



Working with plugins

Click a plugin for single plugin selection.
Hold ctrl and left click to toggle selection state for single plugins.
Left click+drag in the background to create a selection rectangle with a
new selection.
Hold shift and left click+drag in the background to create a selection
rectangle that extends the selection.
Zoom with ctrl+mousewheel.
Left ctrl+drag the background to offset all plugins.
Use ctrl+arrows and ctrl+shift+arrows to move the selected plugins.
Middle click a connection to disconnect.
Left click an event connection to edit its parameter bindings.
Double click a plugin to open its parameter view - unless overriden by
the plugin itself. Press shift+enter to always see the parameter view.
Refer to the plugins properties to set polyphony/number of tracks and
custom attributes.
Plugins listed in the All Machines View and the machine view right
click context menu are read from index.txt. The "Unsorted" entries
contain plugins which are not listed in index.txt.
Click+drag on an audio connection triangle to alter the connection
volume.



Working with plugin groups

To create a group, choose "Create New Group" from the background
context menu.
Or select one or more plugins and/or groups, choose "Create Group
From Selection" from the context menu.
To move a plugin or group between existing groups, use the context
menu option "Move Plugin(s) To Group".
Double click a group to display its contents. Press Escape to go back to
the parent group.
Copy/cut/paste of plugins and plugin groups works as expected



Creating plugins

There are several ways to add new plugins to a song.

1. Go to the All Machines view by pressing shift+F3, or from the main
menu, View -> All Machines. Plugins listed in this hierarchy can be
dragged into the machine view.

2. Right click in the machine view background and select a plugin from
"New" in the popup menu.

3. Right click an existing effect plugin and select a plugin from either the
"Replace", "Insert Before" or "Insert After" popup menus.

4. Right click in a connection triangle and select a plugin from "Insert" in
the popup menu.

5. Click somewhere in the background and start typing, or click on a
connection and start typing to insert.

clbr://internal.invalid/allmachinesview/index.html


Connecting plugins

To connect any two plugins, hold down shift and click and drag from the
plugin you want to create a connection. While dragging and holding the
mouse over a plugin, a popup menu shows which types of connections can
be created.

The types of connections are:

Connection
type Connection data Connection requirements

Audio
connection

Multi-channel, 32-bit floating
point audio data

Source plugin has
zzub_plugin_flag_has_audio_output.

Target plugin has
zzub_plugin_flag_has_audio_input.

Click and drag on the connection triangle to adjust
the volume on all channels.

MIDI
connection MIDI messages

Source plugin has
zzub_plugin_flag_has_midi_output.

Target plugin has
zzub_plugin_flag_has_midi_input and exposes at
least one virtual MIDI device.

Event
connection

Parameter values mapped 1:1
from a list of parameter
bindings

Source plugin has
zzub_plugin_flag_has_event_output and at least
one controller output parameter.

Target plugin needs no special flags. Only one or
more parameters.

Click on the connection triangle to edit the current
event parameter bindings.

Note
connection

Note messages consisting of
note, wave index and amp

Source plugin has
zzub_plugin_flag_has_note_output.

Target plugin needs no special flags. Only one or
more note parameter.



Background context menu

Right+click somewhere in the background to bring up a context menu:

New...: Creates a new plugin or plugins from a template.
The plugin
and template hierarchy displayed in the "New"-submenu is parsed
from Gear/Templates/*.armz and Gear/index.txt.
Plugins not listed in
index.txt are placed in separate menus for "Unsorted Generators",
"Unsorted Effects", "Unsorted Controllers", "Unsorted MIDI Effects",
"Unsorted MIDI Generators" and "Unsorted Other Plugins".

Cut/Copy/Paste: Works with plugin selections on the clipboard.

Create new group: Creates a plugin group with stereo input/output.

Import song...: Import an existing .ARMZ from disk into the current
project.

Unmute all machines: Yes.



Plugin context menu

Right+click a plugin or plugin selection to bring up its context menu:

Mute/Solo/Bypass: Toggles muting options.

Minimize/Unminimuze: Toggles plugin display size.

Hide Incoming: Toggles whether to hide incoming connection wires.
Can help keeping the graph more tidy.

Parameters: Shows the plugin parameter view.

Properties: Shows plugin properties.

Cut/Copy: Works with plugin selections on the clipboard.

Delete: Deletes the plugin.

Smart Delete: Deletes the plugin and keeps existing connections
between plugins before and after the deleted plugin.

Replace: Replaces the machine with another machine Insert
Before/Insert After: Creates a new machine on the connection before
or after the selected plugin.

Render Output: Render the output of the selected plugin to disk or
wavetable as fast as possible. Fails if the song has looping patterns
causing the song to run infinitely.

Save Selection To File: Saves the selected plugins to an .ARMZ on
disk. Similar to "Copy", but saves to disk instead of the clipboard.

Time Source: Sets the source of BPM/TPB and other timing info for
the selected plugin. This is useful when a project plays patterns in
different tempos at the same time. Plugins know only about a single
tempo, so this setting decides what
tempo a plugin should track for its
internal calculations.



Create Full Pattern Format: Creates a new pattern format with all
parameters from the selected plugin.

Create Simple Pattern Format: Creates a new pattern format with
only note and velocity parameters from the selected plugin.



Connection context menu

Right+click on a connection triangle to bring up a context menu:

Disconnect <type>.: Disconnects the specific connection type.

Copy/Paste: Works with the audio connections volumes.

Insert...: Inserts a plugin here.

Properties: Shows connection properties. For setting up the range of
audio channels transfered between the source and target plugins.



Parameter View

Typically, double clicking a machine in the machine view opens its
parameter view. Some machines may override the double click action and
provide
its own user interface instead. In that case, right click the machine
and select "Machine Parameters".

VSTs open their user interface embedded in the parameter view, hiding the
built-in Buzé-sliders. Press the circle-shaped button on the toolbar to toggle
the various parameter view display modes.

The parameter view can also be opened for audio connections: right click a
connection and select "Audio Connection Parameters".



Working with parameters

Click a parameter name to "gray it out". The randomize function only
applies to non-grayed parameters
Use the mouse and arrow keys to select and change the parameter
value
Use Ctrl+Left/Right and Shift+Left/Right for faster slider movements
Press ENTER to type a numeric parameter value into a textbox
Ctrl+Up/Down selects previous/next preset from the preset toolbar



Pattern Editor

The pattern editor is basically a tool to edit numbers in a grid. The numbers
are organized in distinct columns refering to plugin parameters, repeated by
rows for each step of time. Columns can be rendered in different ways,
depending on the type of parameter.

Part of a pattern with sliders, raw values and notes columns.



Working with patterns

Use Enter and Esc to navigate into and out of subpatterns. Pressing Esc
in the root pattern focuses the orderlist.
Press Shift+F2 or choose "Pattern Format Editor" from the context
menu to add or remove columns in the current pattern format.
Press Alt+Backspace to change pattern properties such as name, length,
resolution and looping
Press Ctrl+H to toggle horizontal (like IT) or vertical (like FT) editing
modes
Press Alt+| to cycle automatic column entry modes for note editing.
Toggles between none/either/both of wave and volume.
Press Ctrl+Num plus/Ctrl+Num minus to add/remove tracks (voices).
Note that this modifies the pattern format and will affect all patterns of
the same pattern format
Press Ctrl+F5 to play the current pattern only
Press Ctrl+F6 to set the replay row - indicated by the little arrow
pointing downwards next to the row number - and play the current
pattern only from the current position
Press Ctrl+Shift+F5 to play the current pattern from the replay row
Press Alt+Enter to bring up the parameter view for the plugin under the
cursor
Colors can be modified in theme files.



Working with trigger columns

Make sure the Infopane is enabled in the pattern editor toolbar to
display the embedded pattern list while the cursor is on a trigger
column.
To navigate in the embedded infopane, use Alt+Up/Down/Page
Up/Page Down to move the cursor.
When a pattern format is selected in the infopane, press space to insert a
new pattern at the cursor location. Or make a selection first to create the
pattern of a given length.
When a pattern is selected in the infopane, press space to insert the
selected pattern at the cursor location. Or make a selection first to insert
the pattern repeatedly throughout the selection.
Press Ctrl+Num plus/Ctrl+Num minus to add/remove trigger columns
tracks (voices).
Trigger columns can be added to any pattern format by adding the
"Trigger" parameter of a Pattern plugin to the pattern format.

Trigger columns are accommodated by the right pane showing a list of all
formats and patterns that can be triggered, including itself. This means a
pattern could trigger itself - don't!



Working with the pianoroll

To enable the per-plugin pianoroll, add a "Note Meta" parameter from a
plugin with notes to a pattern format.
Voices for the pianoroll must be allocated manually; add at least one
note parameter to the pattern format "as usual", and use "Add track" in
the pattern for more voices.
Click and drag in the pianoroll background to paint new notes.
Click the top or bottom of a note to stretch the duration of a note.
Click and drag a note to change its pitch and time.
Shift+Click to select and work with more than one note.
Note that pianoroll editing will cause reorganization of the underlying
pattern data, and may not always lead to the desirable results.



Working with envelopes

Any numeric pattern column can be rendered as and have its values
interpolated linearly in realtime:
To enable interpolation for a column, choose "Column Interpolation" ->
"Envelope (Linear)" from the pattern editor context menu.
To enable the envelope editor for a column, choose "Column Editor" ->
"Envelope" from the pattern editor context menu.

Basic keyboard and mouse operations

Operation Action

Arrows Move cursor

Arrow up/down+Arrow left/right Move cursor diagonally

Page Up Move cursor up 16 rows

Page Down Move cursor down 16 rows

TAB Move cursor to next track

Shift+TAB Move cursor to previous track

Home Move to beginning of line

Ctrl+Home Move to beginning of loop

End Move to last column

Ctrl+End Move to end of loop

(keyboard notes) Edit notes

Shift+(keyboard notes) Edit notes, chord mode

Ctrl+Scroll wheel Change pattern display resolution

Shift+Scroll wheel Change font size

Drag+Drop selection Move selected pattern data

Drag+Ctrl+Drop selection Copy selected pattern data

Drag selection+Right click Stamp selected pattern data



Column types

Pattern columns are usually rendered as value columns or trigger columns by
default. Select different rendering modes via right click -> Column Editor or
Ctrl+T.
Any column can be collapsed with Ctrl+K, and uncollapsed with
Ctrl+Shift+K.

Column
type

Parameter
types Special actions

Value
column

Note,
switch,
byte, word

Space toggles note meta on notes, or pastes the current
parameter value. Ctrl+Drag mouse to slide the value.

Trigger
column

Any
column
with
pattern
trigger flag

Space pastes pattern from pattern list. Special2 clones the
pattern under the cursor. Special3 expands/collapses. Special5
goes to the pattern under the cursor. Special6 clones the pattern
under the cursor and goes to the new pattern.

Slider
column Byte, word Ctrl+Click to draw slider values.

Button
column Switch Ctrl+Click or space toggles the button state

Envelope
column Byte, word

Ctrl+Click to insert/move envelope points. This column type is
only a visual representation for the underlying numbers, linear
column interpolation must be enabled for playback.

Pianoroll Note meta
Click+drag to insert new note, or click to select+move single
notes. Shift+click to select+move multiple notes. Drag from
near the note edges to move the start/end of the selected notes.

Note
Matrix Note meta Click to toggle single-hit notes.



Pattern properties

Press Alt-Backspace to display and edit properties of the current pattern.

Name: Changes the pattern name

Length: Changes the pattern length

Resolution: Changes the pattern resolution. Also known as rows per
tick, or lines per row. Determines how fast the pattern is played back.

Looping: Toggles pattern looping. Looping patterns should not be put
in the order list as this would make the song of infinite length, causing
hard disk recorders to fail.

Loop Begin: Sets pattern loop begin row.

Loop End: Sets pattern loop end row.

Track parameter: Name: Sets the label used to describe this track in
the pattern editor.

Track parameter: Mute: Stops playing pattern events in this track.



Pattern editor toolbars

Right click in the pattern editor toolbar area to toggle visibility of individual
toolbars.

Wave toolbar: Changes the currently selected waveform

Format/Pattern toolbar: Two dropdowns: the first lists all pattern
formats, the other lists patterns based on the selected pattern format.
For navigating other patterns.

Octave toolbar: Changes the current octave for note editing.

Step toolbar: Changes the number of rows the cursor will skip when
entering a value.

Play Notes toolbar: Toggles whether to play notes when a note is
entered in a note column.

Info toolbar: Toggles whether to display the info pane.

Follow toolbar: Toggles whether the primary pattern editor should
follow the order list.

Pattern Loop toolbar: Toggles looping of the current pattern.

Pattern Scale toolbar: Hides rows in the current pattern.

Pattern Beat toolbar: Sets the current pattern beat coloring.

Pattern Rows toolbar: Changes the current pattern length.

Pattern Name toolbar: Renames the current pattern.



Pattern context menu

Right+click on a pattern to bring up the context menu:

Pattern Create: Creates a new pattern.

Pattern Clone: Creates a new pattern as a copy of the current.

Pattern Delete: Deletes current pattern.

Pattern Properties: Displays editable pattern properties for length,
resolution, track names, etc.

Pattern List: Opens the pattern list view.

Pattern Format Create: Create a new, blank pattern format.

Pattern Format Clone: Create a new pattern format based on the
current.

Pattern Format Delete: Delete the current pattern format and all
patterns.

Pattern Format Editor: Add or remove columns in the current pattern
format.

Add Trigger Column: Inserts a column for triggering sub patterns
from the current pattern format. Choose to create a new pattern player
and/or a new track, or reuse an existing.

Add Note/Velocity Columns: Inserts only note and velocity parameters
from a specific plugin into the current pattern format.




Add All Columns: Inserts all parameters from a specific plugin into the
current pattern format.


Double Rows: Inserts a blank row after every row.

Halve Rows: Deletes every second row.

Double Length: Makes the pattern twice as long.

Halve Length: Cuts off half of the pattern.

Editor in New Pattern Editor: Opens a new pattern editor Link
Scrollbars To: Select another open pattern editor which will have its
scrollbars locked against this pattern editor.

Column Editor: Toggles column rendering mode. See the column type
table above.

Column Interpolation: Toggles column interpolation mode.
Determines how the pattern player interprets parameter values in
patterns:
Normal (Absolute) is the default and means pattern values are
effective immediately. Normal (Inertia) slides towards the current
pattern value value over 4 rows. Linear (Envelope) interpolates the
value between the two nearest pattern events before and after the
current position.
The column interpolation update frequency is the same
as the current pattern resolution.

Machine Parameters: Shows the machine parameter view for the
plugin under the cursor.

Show Orderlist: Only in the primary pattern editor.



Transform context menu

Press Ctrl+Right Click to bring up the transform context menu. Quick
rundown on the transforms:

Random From -- randomizes the selection from the set of all values
existing in that column currently.
So easy to set a constraint, just type
some values in. But if you type one value in twice, it will be twice as
likely to appear.

Shuffle -- takes all values in selection and randomizes which time-
event has that value.
The positions dont change, just the values

Gradiate fills in between all points in the selection existing.

Thin does the "window blinds" effect. deletes stuff at a modulo Repeat
is like "Echo"
stuff repeats at a phase, each new event becomes the
repeater

Unique removes repeats

Scale takes a "In Range" and maps it to an "Out range"

Fade does the obvious.. needs a toolbar thingy for some of this stuff to
select if it works on volume[greens] or not Rotate rows moves N
chunks to the top and wraps around.
rotate rhythms rotates the set of
distances between each event.
so if you hold down the hotkey for it, it
will give all rhythmic permutations possible given those distances, and
will wrap around eventually depending on how many columns it is All
To First sets all values in the selection to be the value at the top of the
selection First To Last replaces all instances of the value at the top of
the selection, with the value at the bottom of the selection.
IF the value
at the top of the selection is a novalue.. nothing there, then all blank
values get filled in by the value at the bottom of the selection Remove
First deletes all of one at top of selection.
If you have multiple columns
selected, the previous three will skip all columns that dont have the
same [pluginid, group, column]. because the "top" value only applies to
same column types.



Replace waves uses the wave from the toolbar.

Notelengths will clip stuff... min, or max even

Track swap has some special behaviour and its gonna be real useful. If
you make a selection and track swap it, only columns that are shared in
both the leftmost and rightmost track,
get swapped so if you selected in
MTrk... starting on track 1's note column, ending on track 4's volume
column then three columns would be swapped between track 1 and 4
note, wave, volume.
works in reverse too. like if you selected all of
track 4 and only part of track 1. so for trigger cols, same .. just select
the edges.

Row swap .. swaps the row at top of the selection with the bottom.

Curvemap is hardcoded .. you dont enter strings (im not sure if anyone
is crazy enough to want to even) , but the 8 presets should be alright.
The curve index # in the dlg is from top to bottom same as screenshot:




The K transposer

< zeffii_> also i have no idea how to use the K tranposer :)

< Megz> there is 2 modes you can be in

< Megz> chromatic and harmonic

< Megz> if the checkbox is unchecked, you are in chromatic

< Megz> if it's checked you're in harmonic

< Megz> when it is unchecked, the key always has 12 tones

< Megz> so if its unchecked and you choose a key signature, it 
loads that signature then inserts any missing degrees

< Megz> from a default 12-tone set called "chromatic keyed"

< Megz> when it is Checked, you can have less than 12 tones 
selected

< Megz> the Rightmost radial group which has no label means an 
inactive tone




< Megz> when in harmonic mode and you transpose, each note in 
the set moves to the next note in the set

< Megz> so to do a simple test

< Megz> check the box, and set it to "C", "Ionian (Major)"

< Megz> then transpose C E G. will become D F A.

< Megz> notice that when it's unchecked you cannot select 
inactive tones

< Megz> cause their radials are grayed out




Pattern Format View

A pattern format relates
plugin parameters with
pattern columns.

The pattern format view
has a few elements:

The pattern format
dropdown shows a list of
all pattern formats in the
current project.

Type the beginning of the
name of a plugin and/or
parameter in the filter
textboxes to show only
the interesting
parameters.

The plugin parameter
list shows list of all the plugins and parameters with a checkbox next to
each parameter. The checkbox toggles visibility of the parameter in the
currently selected pattern format.



Working with pattern formats

Any plugin parameter can be part of a pattern format.
Unchecking a pattern format column will remove the column and its
values from all patterns.
To create a pattern format with nested patterns, check the Trigger
and/or Transpose parameter on instances of the Pattern Player plugin.
Bring up the pattern format view from the pattern editor with shift+F2,
or right+click inside the pattern editor and choose "Pattern Format
Editor" or from the main menu View -> "Pattern Format Editor".
Track parameters are automatically added and removed from the
current format when changing the number of tracks (voices) from the
pattern editor.



Order List

The order list contains patterns to play in sequence in the current project. It
exists as a widget inside the primary pattern editor, where it is toggled from
the pattern editor context menu -> "Show orderlist".



Working with the orderlist

Press Enter to ascend into the selected pattern for editing. Focus is
returned to the orderlist by pressing Esc from a root pattern.
The "Follow"-toolbar and the associated checkbox in the pattern editor
controls whether the primary pattern editor should always display the
currently selected pattern in the orderlist.
There should not be any looping patterns in the orderlist; pattern loops
override the orderlist.
Patterns are played through entirely before advancing to the next
pattern in the orderlist. Remember to set the pattern length accordingly.



Orderlist context menu

Right+click on a pattern to bring up the context menu:

Insert Order: Clone Pattern: New Pattern: Remove Order: Delete
Pattern: Select Pattern: Cut/Copy/Paste Order: Pattern Properties:
Render to Wave: Queue:

Set Loop Begin: Set Loop End: Play:



Wave Table

The wavetable gives access to an internal cache of waveforms available to
tracker plugins.

There are four sections in the wavetable view:

The instrument list has 200 slots for sample-based instruments.

The wavelevel list contains samples in an instrument.

The wave editor allows for basic editing of samples.

The edit, envelope and slice tabs.



Working with the wavetable

Use a tracker plugin such as Matilde Tracker and FuzzPilz
UnwieldyTracker to play samples from the wavetable in a project.
Drag files from Windows' Explorer, or open the File Browser inside
Buze and drag waveforms from there.
Preview samples by double clicking or playing notes on the keyboard.
The File Browser can also preview samples directly from disk.



The wavetable toolbar

Clear wave: Clears the currently selected instrument and all samples
in it.

Save wave: Saves the first sample of the currently selected instrument
as a WAV to disk.

Scale: Samples: Tells the wave editor to display the scales in samples.

Scale: Time: Tells the wave editor to display the scales in minutes and
seconds.

Scale: Ticks: Tells the wave editor to display the scales in ticks, based
on the global BPM/TPB.

Scale: Hex: Tells the wave editor to display the scales in hex-percent,
compatible with Matilde and UnwieldyTracker's "sample offset"
commands.
The hex scale always goes from 0-FFFF, relative to the
sample length. The last two digits can be discarded on Matilde
Tracker. I.e, for the scale xxyy, Mtrk: 09/xx, and Utrk: xxyy



The instrument context menu

Right click in the context menu to show the context menu:

Properties: Opens the instrument properties.

Export And Open With External Editor: Saves the current
instrument to disk and opens it with the wave editor specified under
Preferences.

Re-Import: Used with the Export-feature above after editing in the
external editor.



The wavelevel context menu

Right click in the context menu to show the context menu:

Properties: Opens the wavelevel properties. For setting looping
points, base note, etc.

Delete: Deletes the wavelevel.

Add blank level: Adds a new blank wavelevel.



File Browser

The file browser shows audio files and archives of supported formats on the
computer, supports live preview playback and can load samples into the
wavetable.

The file browser can be opened with Shift+F9. Or press ENTER when a
slot in the wavetable has focus.



Supported file formats

The file browser uses the stream plugins in Armstrong for live preview. The
stream plugins use libsndfile or libmad to load and play
files directly from
disk. libsndfile supports WAV, AIFF, FLAC, AU and many more formats,
whereas libmad is a library for playing back MP3.

The file browser uses the sample import API in Armstrong for browsing
sample archives and loading sample data into the project. The import API
supports most regular wave formats via libsndfile and libmad, and also
(non-previewable) samples from .mod/.s3m/.it/.xm and .drumkit files as
archives.

Supported archive file formats can be browsed like any directory. In order
to load a sample from disk or from an archive, just drag the file into a slot
in the wavetable. Or press ENTER to load the sample into the currently
selected wavetable slot.



The file browser toolbar

Previous: Goes to the previously visited path.

Next: Goes to the next visited path.

Refresh: Refreshes the contents of the current directory.

Add path: Adds the current directory to the shortcuts dropdown list.

Remove path: Removes the currently selected path from the shortcuts
dropdown list.



All Machines View

Plugins listed in the All Machines View and the machine view right click
context menu are read from index.txt. The "Unsorted" entries contain
plugins which are not listed in index.txt.

Machines can be dragged from the All Machines View into the Machine
View.



Preferences

Audio preferences

Mixer Threads
Number of worker threads to use for multithreaded mixing.

When this is set to 1, a simpler single-threaded algorithm is used for
mixing.

Output Device Currently selected output/playback device.

Mixing Rate Samplerate

Latency Buffer size used for mixing. 4 buffers are used in total.

Master Output Channel
For output devices with more outputs than a stereo channel.

The master sends its output to this stereo channel pair.

Input Device Currently selected input/recording device.

MIDI preferences

Enable MIDI Output
Devices

Enable or disable detected MIDI output devices on the system.

These devices are accessible e.g via the MIDI Output plugin.

Enable MIDI Input
Devices

Enable or disable detected MIDI input devices on the system.

These devices are accessible e.g via the MIDI Input plugin.

GUI preferences - Global

VU Meter Speed Sets the global VU falloff speed.

VU Update Rate Sets the global VU update rate.

Show Accelerators Injects the current keyboard bindings into all toolbars, menus and
context menus.

GUI preferences - Machine View



Default Zoom

Disable Machine Skins

Scale by Window Size

Machines Default
Minimized

GUI preferences - Pattern Editor

Font Changes the fixed-width font used in the pattern editor.

Font Size

Default Pattern Length Default length of new patterns.

Default Value Entry Mode Horizontal = Cursor moves to the right, down at the last digit

Vertical = Cursor moves down

Horizontal Scroll Mode

Vertical Scroll Mode

Sticky Selection

Note-Off String

Note-Cut String

Background for a Note

Background for a Byte

Background for a Switch

Background for a Word

Trigger Column Width Number of characters reserved for a pattern trigger column.



Format/Pattern Creation
Mode

Default Scroller Width

Pattern Naming Mode

Right Click Mode

Subrow Naming Mode

GUI preferences - Wavetable

Default Wave Editor

Press "Apply" in the preferences view to enable any changes.

 



Plugins

Plugins are key to get the most out of Buzé. Internal plugins expose unique
features of Armstrong, and external plugin formats such as VST and
LADSPA open a world of thousands of synths, effects, MIDI-utilities,
analyzers and more.



Types of plugins

The broad categories of plugins could be arranged as following:

Built-in core plugins

Audio device plugins
MIDI plugins
Streaming plugins
Recording plugins
Connection plugins
Pattern player plugins
Controller plugins

Plugins wrappers

VST
Buzz
Psycle
LADSPA

Refer to the plugin references for more details about the specific built-in
plugins.



Types of plugins - by feature

A plugin author/wrapper will decorate his plugin(s) a combination of flags
to tell the engine about its features. Among other things, the flags indicate
what other plugins they can connect to and the type of data flowing between
the plugins. There are four distinct types of connections: Audio, MIDI,
events and notes.

Because a plugin can perform almost any combination of audio/MIDI/event
processing, it could be useful to understand the meaning of the individual
flags and how the user interface responds to these flags.

Flag User interface response

has_audio_input
The plugin accepts incoming audio signals. Multi channel input is allowed.
When creating an audio connection, the user must choose which range of
channels to connect to.

has_audio_output

The plugin can generate or alter audio, and sends its audio to connected
plugins marked has_audio_input. Multi channel output is allowed. When
creating an audio connection, the user must choose which channel range to
connect from.

has_midi_input

The plugin accepts incoming MIDI connections. A plugin with this flag can
expose more than one virtual MIDI device, and the user must decide which
device to connect to when creating the connection from another MIDI plugin.
All Buzz machines have this flag set, forwarding any incoming MIDI signals
to a fixed "Buzz MIDI Device" that represents the Buzz machines' MIDI
capabilities. F.ex it is possible to connect a MIDI tracker to any Buzz
machine, and also VSTs and Psycle plugins support incoming MIDI
connections.

Not all Buzz machines implement MIDI-support, and some (most?) plugins
need to have MIDI support enabled through Properties.

has_midi_output

The plugin sends outgoing MIDI signals. Can be connected to MIDI devices
on plugins with the has_midi_input flag.

A plugin that combines has_midi_input and has_midi_output could do MIDI
filtering, or perform other types of MIDI altering on the fly.

has_event_output



The plugin sends parameter changes through event connections. Plugins with
this flag are peer plugins, in a natively supported way. This type of plugin can
expose one or more "hidden" event-parameters, in addition to its public
parameters seen in the parameter view. This hidden parameter comes in to
play when making event connections.

F.ex an LFO-plugin that combines this flag with the has_interval-flag would
expose such a hidden value-parameter. When bound to another parameter on
a plugin through an event connection, the second parameter would be
modified at a given interval.

However, a transpose-plugin could also use this flag to expose a series of
hidden parameters, each acting as a connectable modifier for altering notes
on-the-fly according to its public parameters.

BTD's Peer machines for Buzz use a different technique for its peering
capabilities, and should not confused with this kind of native peer support.

This is a one-way type of connection, in the sense there is no
has_event_input-flag, since an event connection could be made to any plugin
that has parameters - which most plugins do.

has_note_output The plugin sends notes through note connections to any plugins with a note
parameter.

is_connection

Internally, a connection is implemented as a plugin. Connection plugins are
not rendered as boxes in the machine view, but they still appear e.g in the
Pattern Format View, and other plugin-lists.

Connection plugins are usually named such as "Audio1", "Midi2", "Event3",
and have parameters which can be automated by MIDI and/or added to
pattern formats.

is_sequence The plugin implements its own tempo, and can be used as a tempo source by
other plugins.

has_interval
This flag allows plugins to determine the internal processing chunk size. It is
used by plugins that need to interrupt the graph processing to play notes or
change parameters with sample exact precision. Native peer LFO's use this
flag to determine the interval of parameter updates.

is_stream The plugin plays streams, e.g from disk or the wavetable. The flag triggers
special processing during song seeking in order to resume the stream
correctly.

mono_to_stereo
 Less used, legacy, obscure, internal. Subtle or no impact on the user interface



plays_waves

uses_lib_interface

uses_instruments

does_input_mixing

no_output

control_plugin

auxiliary

is_root

offline


experience.



Plugin parameters

A plugin has 5 parameter groups, or sections of parameters which are
usually refered to by their group index number.

Virtual
parameters group 0

Parameters defined by the engine on all plugins for toggling global
plugin states: Mute, Soft Mute, Bypass and Soft Bypass.

The "Hard" versions mute/bypass permanently until toggled
manually. The "Soft" variants mute/bypass until a parameter change.

Global
parameters group 1 Global plugin parameters defined by the plugin author.

Track parameters group 2
Track plugin parameters defined by the plugin author. Track
paramerers are repeated for the number of plugin tracks.

Controller
parameters group 3

Not visible from the parameter view, and neither user controllable in
the regular sense.

Only event plugins have controller parameters, which can be
connected to parameters on controlled plugins.

Meta parameters group 4

Parameters defined by the engine on certain plugins.

These parameters do not affect the audio in any way, but offer a
method for the user interface to add special "handles" in the song
data to support a richer user experience.

A "Note Meta"-parameter is added on plugins with note parameters.
Buze uses this to enable the inline piano roll or note matrix.

A "Wave Meta"-parameter is added on plugins with wave
parameters. Buze plans to use this to enable an inline wave editor
and recording facility.



Patterns

Patterns are the primary means to both automate plugin parameters and
sequence sub patterns.
Every pattern is based on a template called a "Pattern
Format". The pattern format specifies which plugins and parameters can be
automated in
patterns based on it. Pattern formats can be edited at any time,
and any change made in a template will immediately affect all depending
patterns.

After using the machine view to create some plugins,
use the pattern editor
to create and edit patterns.
Use the pattern format editor to adjust in detail
which columns should appear in the patterns.

When starting a new project, the pattern editor shows an empty pattern based
on an empty pattern format. The quickest way to add some columns is using
the options for "Add Trigger Column", "Add Note/Velocity Columns", "Add
All Columns" in the pattern editor context menu.
Keep in mind these
operations operate on the pattern format, such that if the project contains
other patterns based on the same format, added columns will appear in them
as well.



Track columns

Some plugins have "track parameters": a group of parameters that can be
repeated/duplicated and mapped to some internal concept of tracks in the
plugin. By changing the number of tracks in the Plugin Properties, more or
less parameters will become available in the pattern format editor.

Once some track parameters have been added to a pattern format, it is
possible to quickly add or remove entire tracks from the current pattern
format
by pressing Ctrl+Num plus or Ctrl+Num minus.

Matilde Tracker uses tracks to play different notes/samples at the same time.
FSM Infector uses tracks for polyphony.
Pattern Player plugin uses tracks to
play different patterns at the same time.



Trigger columns

Trigger columns are based on plugin parameters as any other columns.
However, there is only a single plugin that has a trigger typed parameter: the
builtin Pattern Player plugin.

The pattern player plugin interfaces with the world through its parameters,
and Buzé implements a ton of specialized features to help working with the
particular trigger parameter.



The default project

When starting a new project, either upon program startup or selecting File ->
New from the menu, an empty, default song is created from a template.
The
template chosen for the default document depends on the Preferences setting
for "Create Default Pattern Player".



The default startup template: No default pattern player

The default setting for "Create Default Pattern Player" is "Off", which
creates the simplest possible setup: a Master plugin, an empty pattern format
and pattern of length 16. This mode is suitable if there is no need or desire
for immediate pattern nesting, and/or maximum control. Naturally, the user
can create pattern players manually when the need to use nested patterns
arises.



The advanced startup template: With a default pattern player

When "Create Default Pattern Player" is turned on, the default document is
prepared for using nested patterns. In addition to the master, a Pattern Player
plugin is created, its trigger parameter is added on the default pattern format,
and the default pattern length is set to 8192. This default pattern is ready for
nested pattern sequencing.







Pattern formats and patterns

A pattern format is, in its simplest form, a list of selected parameters from
any of the plugins in the project. This list defines what columns will be
visible in the pattern editor.
There can be any number of pattern formats in a
project, and any number of patterns based on each of the pattern formats.
The user decides length and resolution per pattern.

Patterns can be triggered from the order list, or from trigger-columns in
other patterns.



The order list

The order list contains a list of patterns to play in order, with looping points.



The Sequence plugin

The sequence plugin is a user interface "handle" to control the tempo of
patterns playing in the order list. There should never be more than one
Sequence plugin in a project.



Pattern Player plugins

A Pattern Player plugin has global parameters for tempo and track (voice)
parameters for pattern triggers and transposing. Each track (voice) can play
and transpose a pattern. By adding more tracks (voices), it can play more
patterns.

By default, a pattern player inherits its tempo from the global sequence
tempo, but offers parameters for setting BPM and TPB independent of the
global tempo. There can be more than one pattern player in a project, each
with optionally different tempo.



Using MIDI

In order to use external MIDI input or output devices, they must be enabled
via the MIDI settings in Preferences. Enabled MIDI devices can be
accessed by using the MIDI Input or MIDI Output plugins.



Bind MIDI controllers to plugin parameters:

MIDI controllers can be assigned to individual plugin parameters from the
parameter view.
From the machine view, double click a plugin, or press
Shift+Enter, or select "Parameters" from the plugin context menu to show
the parameter view.
Or from the pattern view, press Shift+Enter on a
column which belongs to the plugin whose parameters you want to see.
Then right-click a parameter and choose "Bind to MIDI controller..." to
show the MIDI binding dialog. To create the binding, simply move your
MIDI controller
and see that the values in the dialog updates and press OK.



Recording live MIDI notes and control changes into patterns

'Step' mode

In this mode, the midi notes will be inserted at the cursor.

Add a miditracker to the machineview, and connect it to a VST
instrument.
In the pattern view (F2) check the miditracker's note-column in the
pattern format window (SHIFT-F2)
additionaly add some midichannels by pressing CTRL-+

'Live' mode

This mode is also called 'overdub', and inserts notes at the pattern's current
play-position.

Select a plugin in the Machine View to set MIDI focus.
Enable the recording-button on the main toolbar and press play.
Notes played through the machine view will be recorded into the first
pattern with note columns belonging to the MIDI focus plugin.



MIDI plugins and routing in the machine view

MIDI Tracker and Note Generator

The MIDI Tracker and Note Generator plugins can be used to generates
MIDI signals.

MFX and VST MIDI plugins

MFX is a plugin format designed to generate or process MIDI signals.
Similarly, VST also supports plugins capable of generating or processing
MIDI signals.
It is possible to create MIDI connections between MIDI-
capable plugins and route signals as desired.

hw2zzub

hw2zzub is a native plugin wrapper for hardware MIDI devices. hw2zzub
reads profiles for physical devices described in a special JSON-format,
which includes mappings for CC-to-parameters and audio device input
channels.



Using JACK

JACK is a mechanism to route audio and MIDI in real-time between
applications from different vendors. This solves the same problem as
Rewire.

If JACK is installed, it can be selected in Preferences -> Audio, and also
from Preferences -> MIDI. The MIDI devices work only if the JACK audio
driver is selected.

Buzé initializes JACK with 16 audio output channels and 16 audio input
channels (16 + 16 audio ports).
The channels are automatically routed to the
physical JACK audio ports, and leaving any remaining channels for aux.



Buzé initializes JACK with a MIDI input port and a MIDI output port. Note
these ports are not routed in JACK by default.



MIDI in JACK for Windows

Make sure to "-X winmme" on the jackd startup options:



JACK in other applications

On a basic level, an application needs only to support ASIO in order to
work with JACK:
When installing JACK on Windows, it installs a new
virtual JackRouter ASIO device by default. Any applications using this
audio driver,
can send and receive audio from other applications connected
to JACK.

The JackRouter ASIO device by itself does not deal with MIDI and
synchronization, and will require virtual MIDI cables or a JACK-enabled
VST.



Using VST instruments

(Beware Buzz-users; Buze supports PVST, but also implements its own
native VST-wrapper which is described here.) VST instruments rely on
MIDI messages to play notes, and therefore depends on another plugin to
generate MIDI notes.

For example, one could use another VST, such as a VST implementing a
pianoroll to generate MIDI notes. Or, as we'll discuss here, use one of the
built-in MIDI generators.

To see this in action, first create an instance of a VST plugin. Let's use
Joachims TB4005 as an example.

Right click in the Machine View background and find "TB4005" from the
context menu. Then right click in the Machine View background and find
"MIDI Tracker" from the context menu. Then connect the MIDI Tracker to
the TB4005. Notice how the color of the wire is blue, indicating a MIDI
wire instead of the black audio wire.

Finally connect the TB4005 to the Master with an audio wire. Click on the
MIDI Tracker plugin and play some notes on your keyboard to hear the
TB4005.

Many Buzz plugins also support MIDI. It is possible to connect the MIDI
Tracker to both the Infector as well as the TB4005 in order to
make them
play the same notes. Note however for Infector, you need to set up Infectors
MIDI channel properties. To see these properties, right click the plugin in
the Machine View and select "Machine Properties".

Consider using the more light weight Note Generator plugin instead of the
MIDI Tracker.



Peer plugins

"Peer"-technology refers to the capability of controlling plugin parameters
from other plugins, as pioneered by BTDSys' contributions to Jeskola Buzz.
Armstrong and thus Buze offers a native replacement for Buzz' peers:
Internally termed "controller plugins", with data passed via "event
connections".

The most basic controller plugin is the Value Generator. While simple, it
has a lot of power:

Control multiple parameters at once
Can be chained with other controller plugins
Apply simple arithmetic transforms on chained value generators
Random-generator

Note that the Value Generator is not used for notes. Instead, the Note
Generator plugin is more suitable.

To use this: Create a controller plugin, connect it to another plugin and click
on the connection triangle to open a dialog to select parameter bindings. In
the dialog, press Enter to accept, or Esc to cancel.

There are several other controller plugins available: LFO Generator, Signal
Generator, ADSR Generator, Value Mapper.



Tempo, time signatures, shuffle/swing

Global tempo

The BPM and TPB textboxes in the main toolbar specify the global tempo.

The main toolbar provides access to global BPM and TPB only. If you wish
to change the global swing amount/length, you need to create an
instance of
the Sequence plugin and set its parameters.
Likewise, in order to automate
the global tempo parameters in a pattern, you need to create a Sequence
plugin instance as well.
There can only be one Sequence plugin in a project,
and it always corresponds to the global tempo.

The global tempo affects primarily the currently playing pattern in the order
list, although it is usually inherited in sub patterns by using Pattern Player
plugins.



Alternative time signatures

It is possible to override parts of the tempo signature for individual patterns
using the Pattern Player plugin.




By default, the tempo parameters are set to "Time Source", meaning the
Pattern Player will use tempo information usually derived from the global
tempo.
The "Time source" usually refers to the global tempo, but in some
cases could be set explicitly to refer another Pattern Player plugin.



Using time sources

Time sources allow exposing different tempo signatures to particular
plugins. For example, delay and arpeggiators plugins could use
tempo
information exposed by the host to determine tick lengths. Changing the
time source "tricks" these plugins into seeing a different tempo without
affecting the host playback tempo.

Time sources can be set on any plugins, although not all plugins use this
information. It is possible to chain Pattern Player plugins this way (and
create
"infinite time loops" - don't!).



Shuffle/swing

Traditionally, to create a swing/shuffle effect one had to automate the tempo
to swing the entire sequence,
or use a MIDI plugin to swing the timestamps
of MIDI notes and control changes.

A new, built-in shuffle/swing feature is also available via the Sequence and
Pattern Player plugins through the "Swing" and "Swing Ticks" parameters.

The Swing parameter specifies where the swing occurs, relative to each
beat. The default swing value of 50% means the swing occurs in the middle
of the beat = no swing. A low swing value will swing early, and a high
value will swing late.

The number of rows to swing in a beat is determined by the swing ticks
parameter.

When swinging patterns played at an even number of swing ticks (2, 4, 6
etc), the number of rows per beat can always be split in two equally long
integer size chunks. At odd number of swing ticks (1, 3, 5), the beat cannot
be split into two equally long chunks: theres will always be
extra row which
falls "outside" of the swing. In these cases the the last row of the beat is
played at the target tempo so that the total time of the beat parts matches the
"outer beat".



Pattern resolution and TPB

The "Resolution" property on patterns is a TPB multiplier per pattern and
affects swing etc during playback.



Customizing Buzé

Buzé is configurable via several external resources.



Keyboard bindings

Most keyboard bindings can be changed by editing a text file called
hotkeys.json in the application directory. Please refer to this file for more
information.
The keyboard bindings are parsed on program startup, so
remember to restart Buze after editing hotkeys.json.



Machine index hierarchy (index.txt)

Gear/index.txt
Gear/index.plur
Gear/Include_native_ladspa_psycle.txt

Displayed in the All Machines-view and in the Machine View's "right click
-> New" context menu.

Buzé is compatible with Buzz' and Overloader's extended index.txt.
Additionally, Buzé's index-parser supports including external files.

(TODO: examples and information about how to write traditional and
overloaded index.txt's. add links to popular indexes)



Song templates in the machine index hierarchy

Gear/Templates/*.armz

Create a directory called Gear/Templates and place songs here. They will
show up in under Template in the machine view right-click menu after
restarting Buze.



Themes

Themes/*

Buzé supports exactly the same theme files as Buzz, with some extensions.

Theme Parameters



Buzz machine compatibility

buzz2zzub.ini

Controls blacklisting and dynamic patching of hacked plugins. Please refer
to buzz2zzub.ini directly for detailed information.



MIDI output device aliases

Gear/midi_aliases.txt



GUI layout

Gear/gui.xml

The state of the windowing dock-tab-framework is saved to this path on
exit. Not really intended to be edited by users.



Fonts

Download and install alternative monospaced fonts for increased readability
in the pattern editor.

Andalé Mono
Consolas

http://en.wikipedia.org/wiki/Andal%C3%A9_Mono
http://en.wikipedia.org/wiki/Consolas


Everything else: registry

Audio device settings, MIDI settings, GUI tweaks, toolbar positions. All
registry settings should be editable in Preferences.

HKEY_CURRENT_USER\Software\zzub\buze



Master plugin

Global parameters

Parameter name Type Description

Volume word Master Volume (0=0 dB, 4000=-80 dB)



Track parameters

Parameter name Type Description

none



Description

The Master plugin receives audio from incoming audio connections and
passes the audio on to the audio device. The Master plugin also exposes all
active MIDI output devices, and passes on MIDI messages from incoming
MIDI connections.

The master can optionally be deleted, and users can choose to use separate
plugins for its audio and MIDI capabilities: The Audio Output

or Audio Output16 plugins are capable of sending audio to the current
audio device. The MIDI Output plugin exposes all active MIDI output
devices in the same way the Master does.

 



Audio Output

The Audio Output plugin lets you send audio to available outputs on the
current audio driver.



Global parameters

Parameter name Type Description

none



Track parameters

Parameter name Type Description

none



Plugin attributes

Attribute name Description

Output Channel Set a stereo channel on the audio device to send output to



Audio Input

The Audio Input plugin lets you record audio from available inputs on the
current audio driver. For example recording from a microphone, or
receiving audio from an external MIDI device via ASIO.



Global parameters

Parameter name Type Description

none



Track parameters

Parameter name Type Description

none



Plugin attributes

Attribute name Description

Record Channel Select a stereo channel on the audio device to forward input from



File Recorder

The file recorder machine records its input to a stereo WAV file.

To set a file for recording, go to the plugins properties, and use the file
selector from the plugins "Stream Source" property.



Global parameters

Parameter name Type Description

Enable switch Turn recording on/off

Record Mode byte Record mode (0=wait for play/stop, 1=continuous)

Format byte Output format (0=16bit, 1=32bit float, 2=32bit integer, 3=24bit)



Wavetable Recorder

The wavetable recorder machine records its input to a stereo wavetable slot.



Global parameters

Parameter
name Type Description

Enable switch Turn recording on/off

Record Mode byte Record mode (0=wait for play/stop, 1=continuous)

Format byte Output format (0=16bit, 1=32bit float, 2=32bit integer,
3=24bit)

Instrument wavetable
index Wavetable instrument slot to use (01-C8)



MIDI Tracker

The miditracker is modeled after Polac VST and sends MIDI messages via
MIDI connections.



Global parameters

Parameter name Type Description

Global Command byte Global Command

Command Value word Global Command Value

Program word Change MIDI Program



Track parameters

Parameter name Type Description

Note note Note to play

Velocity byte Velocity of the played note

Note Delay byte Delay before note triggering (ticks?)

Note Cut byte Delay before note release (ticks?)

Command byte Track Command (details below)

Command Value word Command value

Parameter word Track parameter (details below)

Parameter Value word Parameter value

MIDI Channel byte MIDI channel



MIDI Tracker Commands

Name Value Description

MIDI Message 09 Send a MIDI Message (details below)



MIDI Message

The MIDI Message word is of the form xxyy, where "xx" is the message
and "yy" is its value.

Here are the available messages:

Name Message Value Range Description

CC 00-7F 00-7F Sends a MIDI Control Change (CC)

Pitch Bend Range FE 00-FF Defines range of pitch bends

Pitch Bend FF 00-FF Sends a MIDI Pitch Bend



MIDI Tracker Parameters

Name Value Description

None 30ff Does nothing

Pitch Bend 30fe MIDI pitch bend

CC 3000...30fa MIDI Control Change (CC)



MIDI Input

Forwards MIDI messages from open MIDI input devices (e.g a USB MIDI
keyboard) via MIDI connections.



Global parameters

Parameter name Type Description

none



Track parameters

Parameter name Type Description

none



MIDI Output

Sends MIDI messages to an open MIDI output device (e.g an external MIDI
synth) via MIDI connections.



Global parameters

Parameter name Type Description

none



Track parameters

Parameter name Type Description

none



MIDI CC

The midicc machine sends MIDI Control Change (CC) messages.



Global parameters

Parameter name Type Description

Smooth switch Smooth changes

Auto Learn switch Auto learn controllers



Track parameters

Parameter name Type Description

Channel byte MIDI Channel to send CC to

CC byte Control Change (CC)

Value byte Control Change (CC) value



MIDI Time

The miditime machine sends MIDI Sync messages from Buzé to MIDI
instruments.



Stream Plugins

The stream plugins support a wide range of wave formats thanks to libmad
and libsndfile.

These plugins share the same parameters, in order to let hosts implement
previewing features.

The stream plugins synchronize the currently playing stream to the song
playback position during seeks and jumps.

To select a file for playback, go to the plugins properties, and use the file
selector from the plugins "Stream Source" property. Note that the wavetable
stream plugin takes a specially formed filename, and is currently not
possible to set up from the user interface.

http://www.underbit.com/products/mad/
http://www.mega-nerd.com/libsndfile/


Types of stream plugins

WAV/AIFF/etc via libsndfile
MP3 via libmad
Streaming from the internal wavetable



Global parameters

Parameter name Type Description

Offset Low/High word+word Trigger offset

Length Low/High word+word Number of samples to play



Track parameters

Parameter name Type Description

Channel byte MIDI Channel to send CC to

CC byte Control Change (CC)

Value byte Control Change (CC) value



Value Generators

The Value Generator filters, transforms and sends values to other plugins'
parameters.

Value generators can be used to control multiple plugin parameters at once,
and/or connected in chains to perform complex operations on values before
they reach their targets.

The value generator is also capable of generating random numbers using the
Mersenne Twister algorithm using a specified seed.



Global parameters

Parameter
name Type Description

Value word Input value

Seed word Random number generator seed. Used when operator = random. Setting the
seed resets the random number generator.

Threshold byte Skips n values for every outputted value.

Allow min word Min value in allowed range. Tells the plugin to ignore values below this
value.

Allow max word Max value in allowed range. Tells the plugin to ignore values above this
value.



Track parameters

Parameter
name Type Description

Operator byte 0=add, 1=sub, 2=mul, 3=div, 4=mod, 5=neg, 6=random, 7=scale, 8=min,
9=max

Operator value word Value for operation. Ignored when operator is neg or random.

The track operations are applied in order. Division by zero becomes zero.
The random operator destroys the input value.

 



Note Generator

The Note Generator transforms and sends notes to other plugins. Supports
both note connections and MIDI connections.



Global parameters

Parameter name Type Description

Global Octave byte -5..5

Global Note byte -6..6

Harmonic Quantize byte 0=custom, 1=major, 2=minor

C / C# / D / D# / E / F / F# / G / G# / A / A# / B byte Transpose single notes



Track parameters

Parameter name Type Description

Note note Note to process

Wave byte Wave index. Unused in MIDI output

Volume byte Volume



LFO Value Generators

The LFO Value Generator emits LFO values to other plugins' parameters at
specified intervals.



Global parameters

Parameter name Type Description

Interval type byte The type of interval. 0=ticks, 1=ticks/256, 2=sec/16

Interval length byte The interval length in units set by the interval type.

Frequency byte Valid range ~0-8hz

Amplitude word Output value scale

Minimum word Output value minimum/center

LFO Type byte 0=sine, 1=square, 2=saw, 3=triangle, 4=random

Seed word Seeds the random number generator when the LFO type is random.



ADSR Value Generators

The ADSR Value Generator emits ADSR values to other plugins'
parameters at specified intervals.



Global parameters

Parameter name Type Description

Interval type byte The type of interval. 0=ticks, 1=ticks/256, 2=sec/16

Interval length byte The interval length in units set by the interval type.

Attack word 0-1 sec

Decay word 0-1 sec

Sustain word 0-100%

Release word 0-1 sec

Trigger switch 1=start, 0=release



Signal Value Generators

The Signal Value Generator takes audio input and re-emits the signal as
values to other plugins' parameters at specified intervals.



Global parameters

Parameter name Type Description

Interval type byte The type of interval. 0=ticks, 1=ticks/256, 2=sec/16

Mode byte 0=envelope, 1=immediate, 2=absolute



Sequence

The Sequence plugin maps the global pattern player primitive, which plays
patterns in the order list and controls the global tempo.



Global parameters

Parameter name Type Description

BPM word Beats per minute

TPB byte Ticks per beat



Track parameters

Parameter name Type Description

none

The Sequence plugin is a singleton, which means there can be only one in a
project, and maps directly to the internal "root pattern player". Its
parameters control the global tempo.

The global tempo is decides the tempo of patterns in the order list.

 



Pattern Player

The pattern player plugin plays patterns in desired BPM/TPB.



Global parameters

Parameter name Type Description

BPM word Beats per minute, 0 = use timesource

TPB byte Ticks per beat, 0 = use timesource



Track parameters

Parameter name Type Description

Pattern Trigger word Pattern ID to play

Transpose note Transpose pattern notes relative to C-4

A Pattern Player plugin has global parameters for tempo and track
parameters for pattern to play and transpose. By adding more tracks, it can
play more patterns.

By default, a pattern player inherits its tempo from the sequence plugin, but
it offers parameters for setting BPM and TPB independently of the global
tempo.

To simultaneously play patterns in a different tempo, add another Pattern
Player plugin to the project.

 



// Volume Column commands #define VOLCMD_NONE	0

#define VOLCMD_VOLUME	1

#define VOLCMD_PANNING	2

#define VOLCMD_VOLSLIDEUP	3

#define VOLCMD_VOLSLIDEDOWN	4

#define VOLCMD_FINEVOLUP	5

#define VOLCMD_FINEVOLDOWN	6

#define VOLCMD_VIBRATOSPEED	7

#define VOLCMD_VIBRATODEPTH	8

#define VOLCMD_PANSLIDELEFT	9

#define VOLCMD_PANSLIDERIGHT	10

#define VOLCMD_TONEPORTAMENTO	11

#define VOLCMD_PORTAUP	12

#define VOLCMD_PORTADOWN	13

#define VOLCMD_VELOCITY	14 //rewbs.velocity #define
VOLCMD_OFFSET	15 //rewbs.volOff #define MAX_VOLCMDS
16

 



// Effect column commands #define CMD_NONE	0

#define CMD_ARPEGGIO	1

#define CMD_PORTAMENTOUP	2

#define CMD_PORTAMENTODOWN	3

#define CMD_TONEPORTAMENTO	4

#define CMD_VIBRATO	5

#define CMD_TONEPORTAVOL	6

#define CMD_VIBRATOVOL	7

#define CMD_TREMOLO	8

#define CMD_PANNING8	9

#define CMD_OFFSET	10

#define CMD_VOLUMESLIDE	11

#define CMD_POSITIONJUMP	12

#define CMD_VOLUME	13

#define CMD_PATTERNBREAK	14

#define CMD_RETRIG	15

#define CMD_SPEED	16



#define CMD_TEMPO	17

#define CMD_TREMOR	18

#define CMD_MODCMDEX	19

#define CMD_S3MCMDEX	20

#define CMD_CHANNELVOLUME	21

#define CMD_CHANNELVOLSLIDE	22

#define CMD_GLOBALVOLUME	23

#define CMD_GLOBALVOLSLIDE	24

#define CMD_KEYOFF	25

#define CMD_FINEVIBRATO	26

#define CMD_PANBRELLO	27

#define CMD_XFINEPORTAUPDOWN	28

#define CMD_PANNINGSLIDE	29

#define CMD_SETENVPOSITION	30

#define CMD_MIDI	31

#define CMD_SMOOTHMIDI	32 //rewbs.smoothVST

#define CMD_VELOCITY	33 //rewbs.velocity #define
CMD_XPARAM	34 // -> CODE#0010 -> DESC="add extended



parameter mechanism to pattern effects" -! NEW_FEATURE#0010

#define CMD_NOTESLIDEUP 35 // IMF Gxy #define
CMD_NOTESLIDEDOWN 36 // IMF Hxy #define
MAX_EFFECTS	37



Buzz Wrapper

Refer to http://www.buzzmachines.com/ for more information and plugins
download.

http://www.buzzmachines.com/


General

All Buzz plugins can receive MIDI notes and control changes via MIDI
connections.

The wrapper fully supports machines that use hacks. Hacks are enabled per-
machine in buzz2zzub.ini and should be updated regularily, either manually
or by downloading a newer version from the Buze website.

The wrapper has been updated with partial support of some "new Buzz"
features which have been added to the original Buzz since 2008.

If buzz.exe and its DLL dependencies are present in the Buze program
directory, the wrapper will also attempt to load built-in machines directly
from the executable binary.
This allows for using Jeskola Qsamo on
Windows XP (and Wine?) without .NET 4.0. However, it is also an
experimental and unsupported feature, and may break at any time, as it
makes
certain assumptions about the code layout and linker switches used
when compiling the Buzz executable.



Installing new plugins

Copy new plugin DLLs to Gear/Generators or Gear/Effects. New plugins
will be detected on program startup.



VST(i) Wrapper

Wrapped VST-plugins does not have note columns. In order to play notes
on a VST-plugin, create plugin capable of sending MIDI notes, such as a
Note Generator or MidiTracker and connect it to the VST using a MIDI-
connection.



Installing new plugins

Copy new plugin DLLs to Gear/VST. Optionally change the VST Path in
Preferences to point at one or more directories containing VST plugins.
New plugins will be detected on program startup.



Lunar Wrapper

The Lunar plugin format was developed specifically for Buzé audio engine
Armstrong.



Installing new plugins

Copy new plugin directories to Gear/Lunar/fx.



Psycle Wrapper

Refer to http://psycle.pastnotecut.org/ for more information and plugins
download.

http://psycle.pastnotecut.org/


Installing new plugins

Copy new plugin DLLs to Gear/Psycle. New plugins will be detected on
program startup.



LADSPA Wrapper

Audacity has a set of 90 LADSPA-plugins available on their download
page. Refer to http://audacity.sourceforge.net/download/plugins for more
information and plugins download.

http://audacity.sourceforge.net/download/plugins


Installing new plugins

Copy new plugin DLLs to Gear/LADSPA. New plugins will be detected on
program startup.



VAMP Wrapper

VAMP plugins are used for offline wave analysis, and are used to generate
slices based on their output.

Refer to http://www.vamp-plugins.org/ for more information and plugins
download.

http://www.vamp-plugins.org/


Installing new plugins

Copy new plugins to %PROGRAMFILES%/VAMP Plugins. New plugins
will be detected on program startup.



Writing plugins

Our general attitude is: find a compatible plugin wrapper SDK that offers
the capabilities you need and go with it.

No one plugin format offers every capability of Armstrong, except in the
very rare cases a plugin belongs in the core plugin set.

So as to picking a plugin format, there are the following things to consider:



VST

Custom GUI allowed
Multi-IO (VST 2.x, not 3)
Receive MIDI
Allows saving custom data in presets
Parameters support byte values in the range 0..127



Buzz

Custom GUI allowed
Multi-IO (Newbuzz)
Custom pattern editors (newbuzz)
Does input mixing
Receive MIDI



Psycle and LADSPA

Cross platform - no GUI
Stereo only
No MIDI capabilities



Lunar

Cross platform
Multi-IO
Interval, value and note controllers (native peer)
Send/receive MIDI
Supports OpenGL for GUI
Minimal environment and libraries support



Native plugins

Native plugins support everything supported by Armstrong and the
host OS
Should not depend on any specific GUI toolkits, beyond supporting
wrapped plugin GUIs
Compiled directly into the Armstrong shared library, no external
plugin DLLs supported
Should be essential and/or versatile - getting included in the core
should be hard



Please choose a class from the panel on the left side.

Buze API browser

 



Tools used in the build process

The build process uses several tools to generate source code. This document
deals with the internal tools developed specifically for building the
Buzé/Armstrong projects (but which can be and are used in other projects
as well).



Zidl tool - Zzub Interface Description Language

Zidl reads a public interface file as input, and produces source code in
various programming languages as output.

Interface files are text files in zidl language, which supports enums,
namespaces, structs, classes, methods and callbacks used to interoperate
with a library.

The output source file can be a C header, Lua and Python bindings, XML
documentation and more.

History

Zidl was originally developed by Paniq as a means to use the zzub C++
library from a Python application. The original zidl was written in Python.
Later, zidl was ported to C++ by clvn using the re2c lexer and lemon parser
generator. The new version later added support for more features and
languages. zzub was also renamed to Armstrong some time along the way,
but the z was stuck

Using zidl

Zidl uses C as the "lowest common denominator" for cross-language
interopability, as most scripting languages can use libraries in C. Zidl can
be used in C/C++ projects to expose desired functionality to scripting
engines. It is likely also usable from other languages capable of producing
shared
libraries with C calling conventions (f.ex Delphi).

A library typically generates its public interface header using zidl, and
implements the interface methods using C calling conventions.

Given the zidl file and the installed shared library, users can then generate
Lua and Python bindings which call into the final library binary exposing
the C interface.



Download and Source Code

Get the source code and cross platform project files from the following
Subversion repository:

svn://anders-e.com/zidl/trunk/zidl


Latest binaries for Windows exist in the win32deps directory of the Buzé
repository.



Documentgen tool - C++ code generator for SQLite

documentgen reads a database description from a JSON file and produces
C++ code to assist working with a SQLite database.

The output C++ code contains:

Datastructures using boost::mpl to enable traversing database tables,
fields, types and relations at compile-time
Strings with CREATE DATABASE and CREATE TABLE queries
Triggers and callbacks for before/after INSERT/UPDATE/DELETE
operations
Code supporting undo/redo

History

The documentgen tool was developed to automate and simplify the process
of making changes to the file format used by Buzé. Buzé uses SQLite
internally to
contain song data, and also as a file format when saving
projects to disk. The tool has been generalized to be used in any suitable
SQLite/C++ project.

Download and Source Code

Get the source code and cross platform project files from the following
Subversion repository:

svn://anders-e.com/dbgenpp/trunk/dbgenpp


Latest binaries for Windows exist in the win32deps directory of the Buzé
repository.



Introduction

Buzé is a full featured, portable modular music tracker that works on
Windows and Linux (using Wine). People using it vary from studio
bedroom producers to sound designers.

Buzé is a multi-plugin DAW, with support for many file formats. A notable
distinction of the Buze is its ableton-like envelope. You also have a number
of workflow options including piano rolls, you can design custom pattern
layouts, you have dynamic midi and audio routing and you can combine
different pattern-resolutions. Like a standard DAW, you can use Buze for
wave audio editing, midi controlling and more! You can utilize the
multifaaceted Buze as a sampler, software synth, audio editor or sequencer.

Buzé sports a no non-sense interface. Its easy to learn and will help you
increase your musical productivity. The best thing about Buze is that its
free, and it supports a gazillion of free downloadable instrument/effects. All
you have to do is download it, run it, get machines, get samples, and enjoy
your free portable software studio.



Features

Portable studio, no installer-software
100% pattern-based sequencer with envelopes and pianorolls
Very productive since almost everything can be done using shortcuts
All plugins* can be switched between GUI or native Buzé-look, so
you will not be distracted by massive GUI plugins
Supports a wide range of plugins for generating and processing audio,
MIDI, value and note signals. 30+ built-in plugins
Full undo/redo, configurable keyboard shortcuts and window layouts
Scripting engine, the whole audio/midi-engine + plugins can be
customized and extended by your own scripts



Natively supported file formats

Supports VST, Buzz, Psycle, LADSPA and Lunar plugins natively
Imports ARMZ, BMX, IT, S3M, MOD, MID, SID song file formats
Wavetable can import WAV, MP3, FLAC, IFF, Drumkit and many
more file formats. Features a basic wave editor.



Buzé user documentation

Topics for the user documentation:

Getting started
Windows and views
Basic concepts
Plugins overview



Other

Practical Usage Tips
Frequently Asked Questions
Buze Cheatsheets
ld mixer checklist



Buzé developer documentation

General

Armstrong notes
Creating plugins for Armstrong
Armstrong API browser
Buzé API browser
Building the source code
Tools used in the build process



Plugins

The built-in plugins are:

Master
Audio Output and Audio Output16
Audio Input
File Recorder (.WAV output)
Wavetable Recorder
MIDI Tracker
MIDI Input
MIDI Output
MIDI Control Change
MIDI Time
Streaming plugins (.WAV, .MP3 input)
Value Generator
Note Generator
LFO Value Generator
ADSR Value Generator
Signal Value Generator
Sequence plugin
Pattern Player plugin
Modplug plugin

The built-in wrapper plugins are:

VST Adapter
Buzz Adapter
Psycle Adapter
LADSPA Adapter
VAMP Adapter
MIDI Fx (MFX) Adapter
MIDI Hardware Adapter



ld mixer 1.03 checklist

First of all make sure you have latest version from ld's site:

http://koponen.home.xs4all.nl/beta/ld_mixer_v1_21.zip and this:

http://koponen.home.xs4all.nl/beta/ld_mixer_extra_files.zip.

If you replace any existing files, take backups first.

Won't appear or any menus without these files:

Gear\Effects\ld mixer.dll
auxbus.dll
MSVCP60.dll
MSVCRT.dll (already exists on Windows XP)

Crashes as soon as you connect anything to it without these files:

overloader extbuzz.dll
Gear\Machines.dll

Crashes when you connect anything to it when running multiple sessions
of Buzé or Buzz from different folders at the same time.

Crashes when you connect anything to it when running from a directory
where the full path has a space in it, e.g C:\Program Files\Buze.
(fixed in
Buzé 0.4.8!)

Skin doesn't work without Gear\Effects\ld mixer.gfx.

http://koponen.home.xs4all.nl/beta/ld_mixer_v1_21.zip
http://koponen.home.xs4all.nl/beta/ld_mixer_extra_files.zip


Theme Parameters

Below are all the understood theme parameters and their descriptions.

Buzé View Parameter Name Description

Machine View MV Amp BG

MV Amp Handle

MV Arrow Volume High

MV Arrow

MV Arrow Volume Low

MV Background

MV Effect

MV Effect LED Off

MV Effect LED On

MV Effect Mute

MV Effect Pan BG

MV Generator

MV Generator LED Off

MV Generator LED On

MV Generator Mute

MV Generator Pan BG

MV Machine Border

MV Machine Text

MV Master

MV Master LED Off

MV Master LED On

MV Pan Handle

MV Line

MV MIDI Line

MV Event Line



Pattern Editor PE BG

PE BG Dark

PE BG Very Dark

PE Sel BG

PE Text Value

PE Text Note

PE Text Note Off

PE Text Wave

PE Text Trigger

PE Trigger Highlight

PE Trigger

PE Trigger Shadow

PE Text Shade

PE Text Rows

PE Text Headers

PE Loop Points

PE Loop Points Disabled

PE Playback Pos

PE Divider

PE Hidden

PE Control

PE Selection

PE Cursor

Notes PE Text Note 1

PE Text Note 2

PE Text Note 3

PE Text Note 4

PE Text Note 5

PE Text Note 6



PE Text Note 7

PE Text Note 8

PE Text Note 9

PE Text Note 10

PE Text Note 11

PE Text Note 12

Signal Analysis SA Amp BG

SA Amp Line

SA Freq BG

SA Freq Line



Windows and views

Read about the individual windows and views:

Global
Machine View
Parameter View
Pattern Editor
Pattern Format View
Order List
Wave Table
File Browser
All Machines View
Preferences



Basic concepts

Topics on basic concepts:

Plugins
Patterns
The default project
Using MIDI
Using JACK for Windows
Using VST plugins
Using peer plugins
Tempo, time signatures, shuffle/swing
Customizing Buze



#include <zzub/zzub.h>

#include <iostream>

 

using namespace std;

 

int main() {

zzub_player_t* player = zzub_player_create();

zzub_audiodriver_t* driver = zzub_audiodriver_create();

zzub_audiodriver_create_device(player, -1, -1);

 

zzub_player_initialize(player);

 

zzub_audiodriver_enable(driver, 1);

 

zzub_player_load_armz(player, "test.armz");

zzub_player_history_commit(player, 0, 0, "Loaded song");

zzub_player_set_state(player, zzub_player_state_playing);



 

cout << "Press ENTER to quit" << endl;

cin.getline();

 

zzub_player_set_state(player, zzub_player_state_stopped);

zzub_player_destroy(player);

 

zzub_audiodriver_enable(driver, 0);

zzub_audiodriver_destroy(driver);

 

return 0;

}

Flow of a Armstrong call that modifies the song

Many public C API methods operate on the storage component,
using methods that primarly generate and execute SQL commands.
Lets see what happens when we try to rename a plugin. This call
flow is similar for most calls that modify the storage database.

1. A client (such as Buze) calls one of the public C methods, let
us say zzub_plugin_set_name()



2. The C method modifies storage::plugin::name and calls
storage::plugin::update(), which executes an SQL UPDATE
statement on the plugin table

3. SQL triggers in the database generate and save undo SQL
statements in the (temporary) history table

4. SQL triggers generate storage events by calling
storage::document::notify_listeners()

5. storage::notify_listeners() calls player::update_document(),
which is a registered storage event listener

6. player::update_document() parses the event and calls
player::on_update_plugin()

7. player::on_update_plugin() calls mixer::update_plugin()
8. mixer::update_plugin() creates a copy of the updated

metaplugin and adds it to a queue of objects to be swapped in
the audio thread later

9. ... execution returns to the client, who can make more changes
to the document, or commit the changes when done...




10. To commit changes, the client calls
zzub_player_history_commit() which calls
storage::document::barrier()

11. storage::document::barrier() creates an undo step, and
generates a storage event by calling
storage::document::notify_listeners()

12. storage::notify_listeners() calls player::update_document(),
which is a registered storage event listener

13. player::update_document() parses the event and calls
player::on_barrier()

14. player::on_barrier() calls mixer::commit()
15. mixer::commit() generates a user->audio event by calling

mixer::invoke_audio_event()



16. ... execution returns to the client. At this point, the audio thread
will begin handling the audio event:




17. In the audio thread, the mixer parses the event in
mixer::process_audio_event_queue() and calls
mixer::on_barrier()

18. mixer::on_barrier() swaps in the new metaplugin

When the client wants to undo, it calls zzub_player_undo(), which
calls document::undo(). Simplified, this executes the undo SQL
query saved in step 3, and then resumes at step 4.



Storage

Armstrong uses an SQLite database for storing song state and
temporary files for wave data. All operations on a song are
ultimately executed as SQL statements on the database.
The
storage library provides convenience methods and classes for most
operations. Parts of the storage library is autogenerated by the
documentgen-program.

Undo/Redo

The basic concept for undo/redo with an SQL database is described
on the SQLite wiki.

Armstrong extends the technique in the article with support for
multiple INSERT/UPDATE/DELETE per undo step, notification
callbacks and the option to temporarily disable undo buffering.

The ability to temporarily disable undo buffering is important when
the host wants to create and destroy plugins transparently. For
example: during mixdown, a recorder plugin can be
created and
used to record to disk. Or, the analyzer view can create a recorder
plugin for streaming output to the display. Or, for previewing
samples from disk or the wavetable, a temporary stream plugin can
be used. This kind of "jacking the undo buffer" can lead to a broken
undo buffer, and leaves a lot of responsibility on the host developer.

The .armz file format

http://www.sqlite.org/cvstrac/wiki?p=UndoRedo


Armstrong saves to a new file format - .armz - which is a zipped
archive containing the SQLite database file (song.armdb) and all
waveforms (wavelevel_*.raw).

Song versioning

The storage version number is stored in the version field in the
song table. Upon loading, the version field is checked, and if the
version number is lower than the current,
a series of upgrade scripts
are executed. The upgrade scripts are kept as an array of hard
coded SQL statements in document.cpp, and is maintained as the
.armz
database schema changes over time. This approach has
limitations, but has worked out nicely so far.

SQL Extensions

Armstrong adds several helper-functions to the embedded SQLite
engine for use in its internal SQL-queries.

Function name Description

noteutil_buzz_to_midi_note
Converts a Buzz note to a linear
MIDI note (because notes are stored
as Buzz notes)

noteutil_midi_to_buzz_note Converts a MIDI note to a Buzz note
undoredo_enabled_callback Returns 1 if undo is enabled

wavelevel_insert_samples Intended for internal use only. Raw
sample data helper

wavelevel_replace_samples Intended for internal use only. Raw
sample data helper



wavelevel_delete_samples Intended for internal use only. Raw
sample data helper

wavelevel_delete_file Intended for internal use only. Raw
sample data helper

XXX_notify_callback

Intended for internal use only. Used
in INSERT/UPDATE/DELETE-
triggers. Invokes
document::notify_listeners() with
row id and an event id

Database schema

CREATE TABLE attribute (id integer primary key, 
plugin_id integer, attrindex integer, value integer);

CREATE TABLE attributeinfo (id integer primary key, 
plugininfo_id integer, attrindex integer, name 
varchar(64), minvalue integer, maxvalue integer, 
defaultvalue integer);

CREATE TABLE connection (id integer primary key, 
from_plugin_id integer, to_plugin_id integer, type 
integer);

CREATE TABLE envelope (id integer primary key, 
wave_id integer, attack integer, decay integer, 
sustain integer, release integer, subdivision 
integer, flags integer, disabled integer);

CREATE TABLE envelopepoint (id integer primary key, 
envelope_id integer, x integer, y integer, flags 
integer);

CREATE TABLE eventconnectionbinding (id integer 
primary key, connection_id integer, sourceindex 
integer, targetparamgroup integer, targetparamtrack 
integer, targetparamcolumn integer);

CREATE TABLE midiconnection (id integer primary key, 
connection_id integer, mididevice varchar(512));

CREATE TABLE midimapping (id integer primary key, 



plugin_id integer, paramgroup integer, paramtrack 
integer, paramcolumn integer, midichannel integer, 
midicontroller integer);

CREATE TABLE parameterinfo (id integer primary key, 
plugininfo_id integer, paramgroup integer, paramtrack 
integer, paramcolumn integer, name varchar(64), 
description varchar(128), flags integer, type 
integer, minvalue integer, maxvalue integer, novalue 
integer, defaultvalue integer);

CREATE TABLE pattern (id integer primary key, song_id 
integer, name varchar(64), length integer, resolution 
integer, display_resolution integer, 
display_verydark_row integer, display_dark_row 
integer, patternformat_id integer);

CREATE TABLE patternevent (id integer primary key, 
pattern_id integer, time integer, plugin_id integer, 
paramgroup integer, paramtrack integer, paramcolumn 
integer, value integer);

CREATE TABLE patternformat (id integer primary key, 
song_id integer, name varchar(64));

CREATE TABLE patternformatcolumn (id integer primary 
key, patternformat_id integer, plugin_id integer, 
paramgroup integer, paramtrack integer, paramcolumn 
integer);

CREATE TABLE plugin (id integer primary key, flags 
integer, song_id integer, name varchar(64), data 
blob, trackcount integer, x real, y real, 
streamsource varchar(64), is_muted integer, 
is_bypassed integer, is_solo integer, is_minimized 
integer, plugininfo_id integer);

CREATE TABLE plugininfo (id integer primary key, 
song_id integer, uri varchar(64), name varchar(64), 
short_name varchar(64), author varchar(64), mintracks 
integer, maxtracks integer);

CREATE TABLE pluginparameter (id integer primary key, 
plugin_id integer, paramgroup integer, paramtrack 
integer, paramcolumn integer, value integer);

CREATE TABLE sequence (id integer primary key, 
plugin_id integer, pattern_id integer, position 
integer, width integer);




CREATE TABLE song (id integer primary key, version 
integer, title varchar(64), comment blob, songbegin 
integer, songend integer, loopbegin integer, loopend 
integer, loopenabled integer);

CREATE TABLE wave (id integer primary key, song_id 
integer, name varchar(64), filename varchar(64), 
flags integer, volume real);

CREATE TABLE wavelevel (id integer primary key, 
wave_id integer, basenote integer, samplerate 
integer, samplecount integer, beginloop integer, 
endloop integer, format integer, filename 
varchar(64));




Mixing

Multithread mixing

During mixing, Armstrong distributes the work load across a user-
defined number of threads, executed by the operating system on
any available CPUs. The number of worker threads must be one or
more. When a single worker thread is specified, the mixer runs in
"single-thread" mode, falling back to mixing on the audio thread.

Plugins in the graph are considered tasks, where connections define
the dependencies. The dependencies are counted, and stored with
each task.

The distributed mixer adds tasks on a lock free queue which is
polled by the worker threads. Only tasks with a dependency count
of zero are added to the queue.
When a task is done processing, it
decreases the dependency counter of all of its dependent tasks,
allowing the mixer to schedule new tasks.
The task counter and
dependency counts are stored as atomic<int>s, ensuring lock free
operation throughout the process.

Plugin processing order

During processing, Armstrong uses a non-recursive loop to traverse
the plugins. Every time the graph changes (a plugin or connection
was inserted or deleted), the process order is updated. The
following steps determine the final processing order:



1. Create a graph with plugins as vertices and connections as
edges in a boost::adjancency_list.

2. Run a depth_first_search to determine back edges. I.e which
connections are used in feedback loops.

3. Remove the back edges from the graph.
4. Find roots in the graph. I.e plugins which do not send their

output to any other plugins
5. Perform a topological sort for each root.
6. Results from each topological sort are prepended to the final

work order, except the result containing the master; which is
added at the end.

Message passing in the mixer

The mixer uses five ringbuffers for message passing between the
threads.

user_event_queue - for audio->user thread events
audio_event_queue -> for immediate user->audio thread
events
commit_event_queue -> for delayed user->audio thread events
encoder_user_event_queue -> for encoder->user thread events
encoder_event_queue -> for audio->encoder thread events

Audio to user thread events

The following types of messages originate in the audio thread, and
are forwarded to the user thread via mixer::user_event_queue:

Parameter changes



State changes (e.g at the end of a song when looping is
disabled)
MIDI control changes

User messages are polled by calling
mixer::process_user_event_queue(). The equivalent C method is
zzub_player_handle_events().

Immediate user to audio thread events

The following types of events originate in the user thread, and are
passed to the audio thread as fast as possible via
mixer::audio_event_queue:

Start/stop state changes
Play note
Song position changes
MIDI plugin changes
Parameter changes
Editing barrier
Plugin process events

Delayed user to audio thread events

Delayed events are sent upon calling mixer::barrier(). A barrier
indicates all the latest changes should be to updated to the running
graph.
The following events originate in the user thread, and are
passed to the audio thread via mixer::commit_event_queue:

Parameter changes
Plugin process events
Plugin state format changes



Graph changes

Encoder to user thread events

Encoder plugins could generate user events, usually for passing
audio and slices to the wavetable.

Audio to encoder thread events

For passing audio to encoders.

Tickless processing

The mixer knows little of tempo or ticks, and instead provides a
mechanism where plugins decide when to process plugin events.

There are two modes for which a plugin can intercept processing,
which is specified through a plugin flag:

zzub_plugin_flag_is_sequence Effectively marks the plugin as a
time source, which maintains its
own tempo by associating with
and using one or more pattern
players.

zzub_plugin_flag_has_interval Used by plugins that want to
intercept the processing at fixed
intervals.
The engine calls
plugin::process_sequence() to
determine the number of samples
to process before calling
plugin::process_sequence() again.





Player

The player implements listener-interfaces for both the mixer and
the storage and routes events internally.



Language bindings

The Armstrong API is described in a spesial interface description
language called zidl (Zzub IDL). The zidl-tool supports generating
language bindings for Python.
It can also generate a C header file, a
.def file for linking on Windows and HTML documentation.

The Zidl tool is currently undergoing a rewrite to accomodate for
future requirements in a more satisfying manner.



Please choose a class from the panel on the left side.

Armstrong API browser

 



Build instructions

Required tools

Visual Studio Express 2012 for Desktop with at least Update 1. Non-
express and newer versions are assumed to work
TortoiseSVN or your preferred Subversion client

VS2010 works, but only after editing the project files to use the correct
platform toolset. Project files for VS2008 and older are no longer
maintained.

http://www.visualstudio.com/products/visual-studio-express-vs
http://tortoisesvn.tigris.org/


Install Boost

Download and install precompiled 32 bit library binaries of latest Boost
from the Boost download page. For VS2012, choose the msvc-11.0-32
build.

Armstrong requires Boost version 1.53 or newer! Armstrong depends on
boost::lockfree and boost::atomic which were adopted in
Boost version
1.53.

All other dependencies on Windows except Boost are kept in the repository
and must be copied into the working directory as described below.

http://sourceforge.net/projects/boost/files/boost-binaries/


Download source codes and other dependencies from the
repository

Using the command line - note the very important steps where win32deps is
*exported* from trunk and manually *copied* into the working directory:
C:\Users\clvn\Code> md buzesrc
C:\Users\clvn\Code> cd buzesrc
C:\Users\clvn\Code\buzesrc> svn co svn://anders-e.com/buze/trunk/buze
buze
...
C:\Users\clvn\Code\buzesrc> svn export svn://anders-
e.com/buze/trunk/win32deps depfiles
...
C:\Users\clvn\Code\buzesrc>
xcopy depfiles buze /s
...
Optionally checkout the docs, website and
installer files:

C:\Users\clvn\Code\buzesrc> svn co svn://anders-
e.com/buze/trunk/docs docs

	 ...

	 C:\Users\clvn\Code\buzesrc> svn co 
svn://anders-e.com/buze/trunk/installer installer

	 ...




Configure Boost paths in Visual Studio

If Boost was installed in the step above, Visual Studio needs to know where
to locate its headers and libraries.

First start Visual Studio and open buzesrc\buze\buze.sln. Go to the Property
Manager and view the properties of "Microsoft.Cpp.Win32.user" under one
of the project configurations.

In VS Express, this is in the menu under View -> Other Windows ->
Property Manager. Also note that in VS Express the Property Manager is
hidden by default. It can be enabled via Tools -> Setting -> Expert settings.
(here and here) The following paths should be updated to match where
Boost was installed. This example assumes Boost version 1.55 with prebuilt
binaries for VS2012: Include Directories:
c:\boost_1_55_0\

Library Directories:

c:\boost_1_55_0\lib32-msvc-11.0

http://social.msdn.microsoft.com/Forums/en-US/e7b6559e-b0c2-453a-bae6-4234a408fe4e/cannot-open-property-manager-in-visual-c-2010-express-edition
http://blog.gockelhut.com/2009/11/visual-studio-2010-property-sheets-and.html


Build with Visual Studio

With all the source code and dependencies in place, building should be a
matter of opening buzesrc\buze\buze.sln in Visual Studio and choose Build
-> Build Solution.

If you get build errors on the first attempt, first check under Build ->
Configuration Manager and make sure the "Build" checkboxes are checked
for all projects.

After successful compilation, buzesrc\buze contains new binaries for a core
Buzé install with all standard GUI plugins.



MFX (Midi FX) Wrapper

Mfx plugins are used for processing and generating MIDI signals.

Refer to http://www.midiplugins.com/ for more information and plugins
download.

http://www.midiplugins.com/


Installing new plugins

Mfx plugins must be registered with regsvr32. Please refer to any
instructions included with the individual plugins. New plugins will be
detected on program startup.


	Welcome
	User Reference
	Getting started
	Practical usage tips
	Frequently Asked Questions
	Cheatsheets
	Windows and Views
	Global
	Machine View
	Parameter View
	Pattern Editor
	Pattern Format View
	Order List
	Wave Table
	File Browser
	All Machines View
	Preferences

	Basic Concepts
	Plugins
	Patterns
	The default project
	Using MIDI
	Using JACK
	Using VST plugins
	Using peer plugins
	Tempo, time signatures, shuffle/swing
	Customizing Buzé

	Plugins
	Master
	Audio Output and Output16
	Audio Input
	File Recorder
	Wavetable Recorder
	MIDI Tracker
	MIDI Input
	MIDI Output
	MIDI Control Change
	MIDI Time
	Stream Plugins
	Value Generator
	Note Generator
	LFO Value Generator
	ADSR Value Generator
	Signal Value Generator
	Sequence plugin
	Pattern Player plugin
	Modplug plugin
	Buzz wrapper
	VST(i) wrapper
	Lunar wrapper
	Psycle wrapper
	LADSPA wrapper
	VAMP wrapper


	Developer Reference
	Armstrong Notes
	Developing plugins
	Armstrong API Browser
	Buze API Browser
	Building the source code
	Tools used in the build process


